
ESTIMATING SURFACE ROUGHNESS AT SCALES BELOW SENSOR RESOLUTION. Michael K.
Shepard, Department of Geography and Earth Science, Bloomsburg University, Bloomsburg, Pennsylvania 17815,
mshepard@bloomu.edu    .

Descriptive Abstract. We present a simple but
physically-based method by which surface roughness
(RMS slopes or heights) can be estimated from larger
or smaller scales of known topography. The method is
based upon the assumption that the surface topography
can be reasonably characterized by self-affine or frac-
tal statistics. We present an illustration of the method
which estimates the hazards associated with placing a
soft lander on Mars.

Introduction. There are many instances in which
one may know quantitative roughness characteristics
of topography, and from this knowledge, wish to ex-
trapolate the behavior of the topography to greater or
lesser scales.  One example of this includes determin-
ing the relative safety of potential landing sites for
planetary missions.  Often, one only has topographic
information at relatively large scales – tens to hundreds
of meters and up. However, landers are most sensitive
to topography at scales of a few meters or less.  In this
brief, we will illustrate a method by which topography
at these scales may be reasonably estimated.

Methodology. We assume that topographic pa-
rameters are known for a limited range of scales. We
also assume that the surface topography is reasonably
well characterized by self-affine “fractal” statistics.
Over a limited range of scales, it has been well docu-
mented that the following properties are observed to
apply to most terrestrial and extraterrestrial surfaces
(cf. [1,2,3,4] for illustrations and a thorough review of
the literature):
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where s(x) = tan(θ) is the RMS slope of a surface
measured between points spaced a distance, x, apart; s0

is the RMS slope of that surface at a unit distance
spacing; ξ is the RMS height of the surface measured
from a profile of length, L; ξ0 is the RMS height of a
profile of unit length, and H is a scaling parameter re-
ferred to in this work as the Hurst exponent. For topog-
raphy, it has been observed that 0 < H < 1, with H
tending to a central value of 0.5. Topography falling
into this central category is termed Brownian.

If one knows the topography at any scale, x2 or L2,
and the scaling behavior of that surface, H, one can
reasonably estimate the topography at any other scale
from Eqs. (1) and (2) [1]:
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Below, we give an example and actual application of
this result.

Example.  Suppose that one wishes to place a
lander on Mars.  We will assume that the lander has a
lateral or base dimension of 3 meters, and an engi-
neering tolerance for landing in terrains with slopes no
greater than 10° from the horizontal.  Additionally, we
assume that the lander has an engineering height clear-
ance of 0.5 meters.  Now assume that we are examin-
ing two areas as potential landing sites, sites A and B.
Site A has good imaging coverage, and a topographic
map of the area in interest has been generated with a
resolution of 20 m/pixel. Upon analysis, we find that it
can be well characterized by a Hurst exponent of 0.5
from scales of several hundred meters down to 20m,
and has an RMS slope at 20 m of 2.0°.  We apply Eq.
(3) and find that the estimated slope of the surface at
the 3 m scale is 5.1°. If we make the assumption that
the surface is described by Gaussian slope statistics,
then we will encounter slopes greater than our engi-
neering tolerance approximately 5% of the time. If we
make no assumptions about the distribution of surface
slopes, then we must adopt a very conservative esti-
mate (from Chebychev’s Inequality [5]) that we will
encounter slopes greater 10° no more than 25% of the
time.

Site B is also well covered by images from previ-
ous missions but the derived topographic products
have a resolution of 30m/pixel. However, at this scale
the site is found to have an RMS slope of 1.5° and a
Hurst exponent of 0.4. Applying Eq. (3), we find that
the estimated RMS slope at 3 m scale is 6.0°, some-
what rougher than Site A. Although Site B initially
appeared smoother than Site A, this was misleading
because of the scale at which it occurred. Additionally,
the roughness of Site B increases more rapidly than
Site A because of the lower Hurst exponent. Finally,
we must always keep in mind that these are extrapola-
tions based upon the observed scaling behavior at
larger scales.  Our estimate for Site A will be more
reliable than for Site B because it is closer to our de-
sired scale (20 m/pixel vice 30 m/pixel).
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Caveats. Our experience with topographic data
shows that the use of a single Hurst exponent is rarely
sufficient to characterize topography over more than
two orders of magnitude in scale. More often, there are
observed “breaks” in the scaling behavior whereby one
value of H is valid for some range of scales, but differ-
ent values of H are valid at higher and lower scales.
As an example, pahoehoe lava flows in Hawaii were
observed to have a Hurst exponent of 0.7 for scales
from 1m to 10m, but a value of 0.5 for scales less than
1m (site 1 of reference [2]).  This break in scaling be-
havior is attributed to the role of different processes
operating on the topography.  At the 1-10m scale, to-
pography is controlled by flow rheologic properties –
billows and ropy textures are abundant.  However, at
scales less than 1m, weathering has caused the glassy
surface to spall and fragment, littering the surface with
innumerable glassy shards. It is therefore of critical
importance that the data used for extrapolation be as
close as possible to the desired scale.  In general, ex-
trapolations from scales more than 1–1.5 orders in
magnitude away will be unreliable.

It will also be noted that the engineering height
clearances in the above example were ignored.  In fact,
the RMS height and slope behavior of a fractal surface
are functions of one another, and the engineering
height and slope constraints are therefore not inde-
pendent of one another.  In general, the RMS slope at
some scale, x, and the RMS height from a profile of
length, x, are related by [3]
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In the example above, the lander had a slope tolerance
of 10° and a height tolerance of 0.5m.  Using Eq. (5),
we find that a surface with RMS slope of 10° at a scale
of 3m will have an RMS height of 0.37m at the same
scale.  In other words, the slope tolerance is the more
restrictive parameter for site selection in this example.

 Application to Mars 2001 Lander. The engi-
neering constraints on the surface roughness for the
Mars 2001 lander are: (1) surface tilts of <10° (pre-
sumably at the lander scale of ~3 meters) and (2) less
than 1% chance of landing on a rock higher than 0.31m
(again, presumably for a horizontal scale of ~3 meters).
We will assume the surface roughness to be character-
ized by self-affine fractal behavior and Gaussian height

statistics. In this case, the height clearance is the most
restrictive engineering constraint. A 1% chance of
landing on a 3 meter spot with height of <0.31m is
equivalent to requiring an RMS height (1 sigma) of
<0.12m for the landing area (0.31÷ 2.58 sigma). Using
Eq. (5), we find this corresponds to RMS slopes (1
sigma) of <3.2 ° at the lander scale, which gives us less
than 0.2% probability of landing on a slope >10°.
None of this is dependent upon the Hurst exponent.

If we wish to extrapolate this limiting roughness to
larger known topographic scales, we must assume
some Hurst exponent. Experience has shown most to-
pography to fall between the values of H = 0.3 – 0.7
and so we will adopt these extremes and present a
high, low, and intermediate ( H = 0.5) scenario. We can
use Eq. (3) to estimate the RMS slopes for any hori-
zontal scale and Hurst exponent. Assuming that topog-
raphic data is available at the 30m horizontal scale, the
maximum tolerable RMS slopes at this scale are 0.64°
(H = 0.3), 1.0° (H = 0.5), and 1.6° (H = 0.7).  These
values would decrease with increasing known hori-
zontal scales (i.e., slopes must be even less at 50m
horizontal scales). Additionally, these estimates be-
come less reliable at larger horizontal scales (greater
distance to extrapolate).

Conclusions. Natural surfaces have been observed
to obey fractal statistics over a wide range of scales.
This property provides a way to extrapolate surface
properties at scales above and below those which are
known and may prove to be of value in estimating
lander scale hazards.
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